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Recall: Disjoint-set data structures

▶ Also known as “union find”

▶ Maintain collection S = {S1, . . . , Sk} of disjoint dynamic (changing
over time) sets

▶ Each set is identified by a representative, which is some member of
the set
Doesn’t matter which member is the representative, as long as if we ask for the
representative twice without modifying the set, we get the same answer both
times
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Operations

Make-Set(x): make a new set Si = {x}, and add Si to S

Union(x , y): if x ∈ Sx , y ∈ Sy , then S = S − Sx − Sy ∪ {Sx ∪ Sy }
▶ Representative of new set is any member in Sx ∪ Sy , often the

representative of one of Sx and Sy

▶ Destroys Sx and Sy (since sets must be disjoint)

Find(x): return representative of set containing x
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List representation
▶ Each set is a single linked list represented by a set object that has

▶ a pointer to the head of the list (assumed to be the representative
▶ a pointer to the tail of the list

▶ Each object in the list has attributes for the set member, pointer to
the set object and next
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Make-Set and Find
Make-Set(x): Create a single ton list in time Θ(1)

Find(x): follow the pointer back to the list object, and then follow the
head pointer to the representative (time Θ(1))
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Union
A couple of ways of doing it

1 Append y ’s list onto the end of x ’s list. Use x ’s tail pointer to find
the end.
▶ Need to update the pointer back to the set object for every node on y ’s

list.
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Union
A couple of ways of doing it

1 Append y ’s list onto the end of x ’s list. Use x ’s tail pointer to find
the end.
▶ Need to update the pointer back to the set object for every node on y ’s

list.
▶ If appending a large list onto a small list, it can take a while
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Union
A couple of ways of doing it

2 Weighted-union heuristic Always append the smaller list to the
larger list (break ties arbitrarily)

Theorem
With weighted-union heuristic, a sequence of m operations on n elements
take O(m + n log n) time.
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Weighted-union heuristic
Theorem
With weighted-union heuristic, a sequence of m operations on n elements
take O(m + n lg n) time.

Proof sketch Make-Set and Find still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each
time

times updated size of resulting set
1 ≥ 2
2 ≥ 4
3 ≥ 8
...

...

k ≥ 2k

...
...

log n ≥ n

Therefore, each representative is updated ≤ log n times
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Forest of trees
▶ One tree per set. Root is representative
▶ Each node only points to its parent

Make-Set(x): Make a single-node tree

Find(x): follow pointers to the root

Union(x , y): make one root a child of another
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Great heuristics
Union by rank: make the root of the smaller tree a child of the root of
the larger tree
▶ Don’t actually use size
▶ Use rank, which is an upper bound on height of node
▶ Make the root with the smaller rank a child of the root with the

larger rank

Path compression: Find path = nodes visited during Find on the trip
to the root, make all nodes on the find path direct children to root.
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Running time
If use both union by rank and path compression,

O(m · α(n))

where α(n) is an extremely slowly growing function:

n α(n)
0 − 2 0

3 1
4 − 7 2

8 − 2047 3
2047− ≫ 108 4

▶ α(n) ≤ 5 for any practical purpose
▶ The bound O(m · α(n)) is tight
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MINIMUM SPANNING TREES
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Origin of today’s lecture
Otakar Boruvka (1926)
▶ Electrical power company in western Moravia in Brno
▶ Most economical construction of electrical power network
▶ Concrete engineering problem led to what is now a cornerstone

problem-solving model in combinatorial optimization
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A spanning tree of a graph
A set T of edges that is
▶ Acyclic
▶ Spanning (connects all vertices)

a

b d g

c f h

e i
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A spanning tree of a graph
A set T of edges that is
▶ Acyclic
▶ Spanning (connects all vertices)
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A spanning tree of a graph
A set T of edges that is
▶ Acyclic
▶ Spanning (connects all vertices)
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Acyclic and connected = spanning tree
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Minimum spanning tree (MST)
INPUT: an undirected graph G = (V , E ) with weight w(u, v) for

each edge (u, v) ∈ E

OUTPUT: a spanning tree of minimum total weight
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Minimum spanning tree (MST)
INPUT: an undirected graph G = (V , E ) with weight w(u, v) for

each edge (u, v) ∈ E

OUTPUT: a spanning tree of minimum total weight
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Spanning tree of weight 10 + 8 + 1 + 3 + 8 + 5 + 6 + 2 = 43
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EXAMPLE APPLICATIONS
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Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Solution given by a MST on the graph
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Example 2: Clustering

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Note: this is a “heuristic” algorithm. Needs analysis
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Example 3: Dendritic structures in the brain
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Example 4: Phylogenetic trees
Infer evolutionary relationships among various biological species
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ALGORITHMS FOR MST
“Greed is good. Greed is right. Greed works. Greed clarifies, cuts

through and captures the essence of the evolutionary spirit.”
- Gordon Gecko
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Prim’s algorithm
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Prim’s algorithm
Start with any vertex v , set tree T to singleton v

Greedily grow tree T :
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T
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Minimum spanning tree of weight 10 + 8 + 5 + 6 + 3 + 1 + 8 + 2 = 43
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Why does it work?
Cuts

▶ A cut (S, V \ S) is a partition of the vertices into two nonempty
disjoint sets S and V \ S

▶ A crossing edge is an edge connecting vertex S to vertex in V \ S
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Why does it work?
Cut property

Consider a cut (S, V \ S) and let
▶ T be a tree on S which is part of a MST
▶ e be a crossing edge of minimum weight

Then there is MST of G containing e and T

S V \ Se
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Why does it work?
Cut property

Proof. If e is already in MST we are done.

Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f ) ≥ w(e) (actually must be equal)
Replace f by e in MST
This gives new MST which contains T and e

S V \ Se
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Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T . Final T is MST by this result
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Implementation challenge

How do we find minimum crossing edge at every iteration?

Check all outgoing edges:
▶ O(E) comparisons at every iteration
▶ O(E V) running time in total

More clever solution:
▶ For every node w , keep value dist(w) that measures the “distance”

of w from current tree
▶ When a new node u is added to tree, check whether neighbors of u

decreases their distance to tree; if so, decrease distance
▶ Maintain a min-priority queue for the nodes and their distances
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Implementation and Analysis

▶ Initialize Q and first for loop: O(V lg V )
▶ Decrease key of r : O(lg V )
▶ while loop: V Extract-Min calls ⇒ O(V lg V )

≤ E Decrease-Key calls ⇒ O(E lg V )
▶ Total:O(E lg V ) (can be made O(V lg V ) with careful queue implementation)
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Kruskal’s algorithm
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Kruskal’s algorithm
Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle
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Kruskal’s algorithm
Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

Minimum spanning tree of weight 1 + 2 + 3 + 5 + 6 + 8 + 8 + 10 = 43
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Why does it work?
Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T
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Implementation challenge
In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component ⇒ use disjoint sets (union-find) data structure

Let the connected components denote sets
▶ Initially each singleton is a set

▶ When edge (u, v) is added to T , make union of the two connected
components/sets
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Implementation and Analysis

▶ Initialize A: O(1)
▶ First for loop: V Make-Sets
▶ Sort E : O(E lg E )
▶ Second for loop: O(E ) Find-Sets and Unions
▶ Total time: O((V + E )α(V )) + O(E lg E ) = O(E lg E ) = O(E lg V )

If edges already sorted time is O(Eα(V )) which is almost linear
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Summary

▶ Greedy is good (sometimes)

▶ Prim’s algorithm

Min-priority queue for implementation

▶ Kruskal’s algortihm

Union-Find for implementation

▶ Many applications
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THE SHORTEST PATH PROBLEM
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Shortest paths
Input: directed graph G = (V , E ), edge-weights w(u, v) for (u, v) ∈ E

a

b c

d e

3

5

6

2 21 4

6

7
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Shortest paths
Input: directed graph G = (V , E ), edge-weights w(u, v) for (u, v) ∈ E

Weight of path ⟨v0, v1, . . . , vk⟩:
∑k

i=1 w(vi−1, vi)

a

b c

d e
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5
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2 21 4

6

7

Path of weight 3 + 6 = 9
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Input: directed graph G = (V , E ), edge-weights w(u, v) for (u, v) ∈ E

Weight of path ⟨v0, v1, . . . , vk⟩:
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Shortest paths
Input: directed graph G = (V , E ), edge-weights w(u, v) for (u, v) ∈ E

Shortest paths from a: (may have many solutions)

a

b c

d e

3

5
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2 21 4

6

7

3 9

5 11
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Problem variants

Single-source: Find shortest paths from source vertex to every vertex

Single-destination: Find shortest paths to given destination vertex

Can be solved by single-source by reversing edge directions

Single-pair: Find shortest path from u to v

No algorithm known that is better in worst case than solving single-source

All-pairs: Find shortest path from u to v for all pairs u, v of vertices

Can be solved by solving single-source for each vertex. Better algorithms known
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NEGATIVE WEIGHTS
AND APPLICATIONS
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Negative-weight edges
We will allow negative weights

OK, as long as no negative-weight cycle is reachable from source:
▶ Then we can just keep going around it to have paths of length −∞

Some algorithms only work with positive weights (Dijkstra’s algorithm)

s

a
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g
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Why negative weights?
Example: Buying and selling currency
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Why negative weights?
Example: Buying and selling currency

Lecture 20, 30.04.2025



BELLMAN-FORD ALGORITHM
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Algorithm
Input: directed graph with edge weights, a source s, no negative cycles

For each vertex v keep track of
▶ l(v) = current upper estimate of length of shortest path to v
▶ π(v) = is the predecessor of v in this shortest path

Start by trivial initialization:
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Improving the shortest-path estimate
Can we improve the shortest path estimate for v by going through u and
taking (u, v)?

4 10

u v

3

Relax

4 7

4 6

u v

3

Relax

4 6

Bellman-Ford updates shortest-path estimates iteratively by using Relax
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Bellman-Ford Algorithm
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Correctness

Only guaranteed to work if no negative cycles!

As we shall see later, it can also be used to detect negative cycles
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Optimal substructure
If ⟨s, v1, . . . , vk , vk+1⟩ is a shortest path from s to vk+1

Then ⟨s, v1, . . . , vk⟩ is a shortest path from s to vk

Proof:

▶ Suppose toward contradiction: there exists shorter path p′ from s to vk

▶ Then weight of p′ + (vk , vk+1) is smaller than p + (vk , vk+1) which contradicts
that p + (vk , vk+1) was a shortest path from s to vk+1
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Proof of correctness
Invariant: ℓ(v) is at most the length of the shortest path from s to v
using at most i edges after the i ’th iteration

Proof by induction:
Base case trivial: when 0 iterations ℓ(s) = 0 and all other equal to infinity

Inductive step: consider any shortest path from s to vk+1 using at most i edges

▶ The path p from s to vk+1’s predecessor vk is the shortest path using at most
i − 1 edges (by optimal substructure)

▶ By induction hypothesis ℓ(vk) ≤ w(p) after previous iteration
▶ Hence, ℓ(vk+1) ≤ ℓ(vk) + w(p) = “length of shortest path from s to vk+1 using

at most i edges” in the i-th iteration
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Proof of correctness
Invariant: ℓ(v) is at most the length of the shortest path from s to v
using at most i edges after the i ’th iteration

If there are no negative cycles reachable from s, then for any v there
is a shortest path from s to v using at most n − 1 edges

Proof: If there is a path with n or more edges, then there is a cycle and
since its weight is non-negative it can be removed

Therefore, Bellman-Ford will return correct answer if no negative cycles
after n − 1 iterations
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Detecting negative cycles
There is a negative cycle reachable from the source if and only if the
ℓ-value of at least one node changes if we run one more (n:th) iteration
of Bellman-Ford
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Detecting negative cycles
There is no negative cycle reachable from the source if and only if the
ℓ-value of no node changes if we run one more (n:th) iteration of
Bellman-Ford

From the correctness proof, we have that if there are no negative cycles reachable
from the source, then the ℓ values don’t change in n:th iteration.

We need to prove: If the ℓ-value of the vertices don’t change in the n:th
iteration, then there is no negative cycle that is reachable from the source

Proof. In this case ∀(u, v) ∈ E : ℓ(u) + w(u, v) ≥ ℓ(v).

So for a cycle v0 − v1 − · · · − vt−1 − vt = v0,

t∑
i=1

ℓ(vi ) ≤
t∑

i=1

(ℓ(vi−1) + w(vi−1, vi )) =
t∑

i=1

ℓ(vi−1) +
t∑

i=1

w(vi−1, vi )

Red sums are the same, hence the cycle is non-negative 0 ≤
∑t

i=1 w(vi−1, vi )
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Example 1
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Example 2
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Runtime analysis

▶ Init-Single-Source updates ℓ, π for each vertex in time

Θ(V )
▶ Nested for loops runs Relax V − 1 times for each edge. Hence

total time for these loops is Θ(E · V )
▶ Final for loop runs once for each edge. Time is Θ(E )

Total time: Θ(E · V )
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Final comments on Bellman-Ford

▶ Can be used to find negative cycles
▶ Run for n-iterations and detect cycles in “shortest path tree” these will

correspond to negative cycles

▶ Easy to implement in distributed settings: each vertex repeatedly
ask their neighbors for the best path
▶ Good for routing and dynamic networks
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Problem solving (20 pts, previous exam question)
The famous alpine ski racer Lindsey Vonn has sent her assistant to measure the
altitude differences of the ski lifts and slopes of a famous ski resort in Switzerland.
The assistant returns after several days of hard work with a map of all ski lifts and all
slopes together with the altitude difference between the start station and the end
station of each lift and the altitude difference between the start station and end
station of each slope. A slope starts from the end station of a lift and ends at the
start station of a potentially different lift (see the figure below).
Lindsey wants to verify the map of her assistant by performing the following sanity
check: starting from any point A, no matter how we ski (using lifts and slopes), the
altitude change when we return to A should be 0 (i.e., neither strictly negative nor
strictly positive). Design an algorithm to perform this sanity check and analyze its
running time in terms of the number of slopes and ski lifts (|E |) and the number of
start and end stations (|V |). Your algorithm should run in polynomial time (in |V | and
|E |).
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DIJKSTRA’S ALGORITHM
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Dijkstra’s algorithm

▶ Only works when all weights are nonnegative

▶ Greedy and faster than Bellman-Ford

▶ Similar idea to Prim’s algorithm (essentially weighted version of BFS)

Lecture 20, 30.04.2025



Dijkstra’s algorithm
Start with source S = {s}

Greedily grow S:
at each step add to S the vertex that is closest to S

(minimum over v < S of minimum over u ∈ S, u.d + w(u, v))

s
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Implementation and Running Time

Implementation with priority-queue as Prim’s algorithm with shortest
path keys:

Running time Like Prim’s dominated by operations on priority queue:
▶ If binary heap, each operation takes O(lg V ) time ⇒ O(E lg V )
▶ More careful implementation time is O(V lg V + E )
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Problem Solving

Show that Dijkstra’s Algorithm is correct by proving the following loop
invariant:

“At the start of each iteration, we have for all v ∈ S that the distance
v .d from s to v is equal to the shortest path from s to v”
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